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Abstract—We investigate the prediction of wideband MIMO
spatial channels. We propose a two-stage long range para-
metric prediction scheme that exploits the temporal, spatial
and frequency correlations in a realistic cluster based fading
channel. The proposed scheme utilizes the frequency correlation
in an ESPRIT-like approach to estimate the cluster delays and
scattering coefficients. The spatial and temporal correlations
are then used to jointly estimate the angles of arrival, angles
of departure and Doppler shifts via a 3D ESPRIT algorithm.
Simulation results using the standardized 3GPP/WINNER II
spatial channel model show that the proposed algorithm offers
improved prediction performance over previous methods and can
achieve longer prediction range.

Index Terms—MIMO-OFDM, multipath propagation, cluster
based models, estimation and prediction, ESPRIT

I. INTRODUCTION

The performance of MIMO-OFDM systems is limited by

multipath fading - temporal and frequency variations of the

channel induced by multipath propagation and mobility in

the scattering medium. The variation of the received signal

power resulting from channel fading can potentially result in

loss of transmission and degrades the overall system perfor-

mance. Adaptive MIMO-OFDM wireless systems overcome

this limitation by varying the transmit power, modulation

scheme and/or order, and coding for each subcarrier based

on the currently available channel state information (CSI) at

the transmitter [1, 2]. Transmit side CSI is typically obtained

in time division duplex systems by using reciprocity of the

forward and reverse channels. However, in frequency division

duplex systems, CSI is obtained at the receiver and fedback to

the transmitter via a dedicated low rate feedback link. Because

of the inherent processing and feedback delay, the CSI rapidly

becomes outdated before its actual usage for link adaptation

at the transmitter, particularly in high mobility scenarios.

Prediction of future channel states has been studied and

shown to be efficient in mitigating performance degradation

resulting from outdated CSI [3–8]. The potential of utilizing

the additional information resulting from multiple sampling of

the wavefield in the prediction of MIMO-OFDM channel was

illustrated in [9, 10]. The authors showed using the Cramer-

Rao bound that significant improvement in prediction error

and achievable prediction horizon can be achieved from using

the additional spatial dimension in MIMO channels. There is,

however, no prediction algorithm in the open literature to the

best knowledge of the authors, that fully exploit this additional

information.

Motivated by the benefits of channel prediction for enabling

adaptive transmission in mobile MIMO-OFDM systems and

the gain offered by using the spatial structure of the MIMO

channel to aid prediction, we here investigate parametric

channel prediction using subspace based parameter estimation.

We utilize a far-field cluster based double directional spatial

channel model (SCM) for MIMO systems as obtained in recent

standardized MIMO channel models such as 3GPP/WINNER

II [11] and COST273 [12]. We propose a 2 stage ES-

PRIT based parameter estimation algorithm comprising of 1-

dimensional cluster parameter estimation stage followed by 3-

dimensional joint angle of arrival (AOA), angle of departure

(AOD) and Doppler shifts estimation. Our predictor utilizes

the transmit spatial, frequency, receive spatial and temporal

correlations of the channel to extract the parameters of the

dominant clusters and apply these to predict future states of

the channel. Estimation of the channel parameters in stages in

the proposed algorithm offers a number of potential benefits

viz:

• Reduction in the number of parameters to be estimated,

• Increased number of rays that can be resolved using the

limited number of available samples, and

• Improved overall prediction performance.

The remainder of the paper is organized as follows. In

Section II, we present a description of the double directional

cluster based channel model. The proposed algorithm is pre-

sented in section III. Section IV present results of numerical

simulations and performance comparison. Finally, we draw

conclusions in section V.

II. CHANNEL MODEL

We consider a ray-based wideband spatial MIMO channel

model for the development of the prediction scheme in this

paper. This model is an extension of the continuous time

impulse response of doubly selective single input single output

(SISO) fading channels defined as

h(t; τ) =

C(t)
∑

c=1

αc(t)δ(τ − τc(t)) (1)

where t and τ denote time and delay variables respectively.

C(t) is the time-varying number of clusters1, and αc(t) and

τc(t) are the scattering co-efficient and delay of the cth cluster,

1The term cluster will be used interchangeably with path to refer to a group
of rays with closely spaced delays.



respectively. We assume that the number of clusters is fixed

and subsequently remove the time dependence of C. We also

assume that the scatterers are in the far field of both the

transmit and receive antennas so that the propagating waves

can be modelled as plane waves. The scattering coefficient of

the cth cluster can therefore be defined as

αc(t) =

Rc
∑

r=1

βr,c exp(jνr,ct) (2)

where Rc is the number of rays within the cth cluster, βr,c

and νr,c = 2πvm cos(θv)/λ are the complex amplitude and

Doppler frequency of the rth ray in the cth cluster, respec-

tively. vm is the mobile velocity, λ is the carrier wavelength

and θv is the angle between the rth ray in the cth cluster and

the direction of motion of the receiver. (2) can be extended

to the modelling of a MIMO channel with M transmit and

N receive antennas via the introduction of the transmit and

receive array structures as

Hc(t) =

Rc
∑

r=1

βr,car(θr,c)a
T
t (φr,c) exp(jνr,ct) (3)

where [·]T denotes the non-conjugate transpose of the as-

sociated matrix. ar(θr,c) and at(φr,c) are the receive and

transmit array response vectors, respectively. θr,c and φr,c are

the angles of arrival and angles of departure, respectively. Note

that (3) holds for any array geometry at either end of the link.

We will consider MIMO-OFDM systems with uniform linear

arrays (ULA) at both ends of the link. The receive steering

vector for the N element array is thus

ar(θr,c) = [1, exp(jΩr,c), · · · , exp(j(N − 1)Ωr,c]
T (4)

where Ωr,c = kdr sin(θr,c). k = 2π/λ is the wave number.

The transmit array steering vector having M elements is

defined analogously. For simplicity, we will henceforth remove

the dependence of the steering vectors on the parameters.

Summing (3) over the clusters and taking the Fourier transform

in the delay domain, we obtain the MIMO channel frequency

response as

H(t, f) =
C
∑

c=1

Hc(t) exp(−j2πfτc)

=

C
∑

c=1

Rc
∑

r=1

βr,cara
T
t exp(jνr,ct− j2πfτc) (5)

where f is the frequency variable. Assuming that the MIMO-

OFDM system has a symbol duration of ∆t and subcarrier

spacing ∆f , the sampled frequency response is given as

H(q, p) =

C
∑

c=1

Rc
∑

r=1

βr,cara
T
t exp(jqγr,c − jpηc) (6)

where γr,c = νr,c∆t and ηc = 2π∆fτc are the normalized

radian Doppler frequency and delay, respectively.
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Fig. 1: Block diagram of the proposed MIMO-OFDM channel

prediction scheme.

III. PROPOSED MIMO-OFDM PREDICTION SCHEME

In the previous section, we presented the double directional

cluster based model for wideband MIMO systems upon which

the prediction scheme derived here is based. We consider a pi-

lot based MIMO-OFDM with Nf and Nt equally spaced pilot

symbols in frequency and time, respectively. We assume that

the pilot channels have been estimated using suitable channel

estimation techniques such as least square or minimum mean

square error schemes. Due to imperfections in the channel

estimates, we model the estimated frequency response as

Ĥ(q, p) = H(q, p) +W(q, p); q = 1, · · · , Nt; p = 1, · · · , Nf

(7)

where W(q, p) denotes the N ×M channel estimation noise

assumed to be complex Gaussian with zero mean and variance

σ2. Given the model in (6) and the NtNf channel estimates, as

shown in Fig. 1, the proposed algorithm estimates the cluster

delays, jointly estimates the spatial and temporal parameters

of each cluster and applies the estimated parameters to predict

future states of the channel.

A. Cluster Parameter Estimation

The cluster parameter estimation stage involves estimating

the number of clusters and cluster delays using the channel

frequency correlations followed by estimation of the cluster

impulse responses. We form a Hankel matrix using the Nf

frequency domain pilot channel frequency responses for each

of the Nt time symbols as

D̂(q) =















ĥ
T (q, 1) ĥ

T (q, 2) · · · ĥ
T (q, Sf )

ĥ
T (q, 2) ĥ

T (q, 3) · · · ĥ
T (q, Sf + 1)

...
...

. . .
...

ĥ
T (q, Tf ) ĥ

T (q, Tf + 1) · · · ĥ
T (q,Nf )















(8)

where ĥ(q, p) = vec[Ĥ(q, p)] is the vectorised form of the

channel response obtained by stacking its columns. Sf and

Tf = Nf−Sf+1 are the Hankel matrix size parameters which

determine the size of the covariance matrix and the number

of correlation averages. Tf is chosen such than Cmax < Tf <



Nt
2. A rule of thumb for choosing the value of Hankel matrix

size parameter is given by [13]

Tf =

⌈

3

5
Nf

⌉

(9)

Using the forward-backward averaging method, the frequency

correlation matrix averaged over the Nt time domain pilots is

obtained as

R̂f =
1

2NMNtSf

(

D̂D̂
H + JD̂

H
D̂J

)

(10)

where [·]H denotes the Hermitian transpose, J is the Tf × Tf

exchange matrix having ones on the anti-diagonal and zeros

elsewhere.

1) Estimation of the Number of Clusters: We propose using

a modified version of the minimum description length (MDL)

[14] referred to as minimum mean square error (MMSE)-

MDL by the authors for estimating the number of clusters.

The estimate of C is defined as

Ĉ = arg min
1≤u≤Nf−1

Nf log(λu) +
1

2
(u2 + u) logNf (11)

where λu;u = 1, · · · , Nf are the eigenvalues of the frequency

correlation matrix R̂f .

2) Cluster Delay Estimation: Similar to the SISO esti-

mation and prediction algorithms in [6, 15], we propose an

ESPRIT [16] based approach for the cluster delay estimation

stage of the prediction scheme. Letting Vs be the signal

subspace matrix containing the eigenvectors corresponding

to the Ĉ largest eigenvalues of R̂f , we form two subarray

matrices with maximum overlap as

Vs1 = [INf−1 0]

Vs2 = [0 INf−1] (12)

where INf−1 ∈ R
(Nf−1)×(Nf−1) is the identity matrix and 0

is a (Nf − 1)× 1 vector of zeros. We form the 1D invariance

equation as

Vs1Φ = Vs1 (13)

where Φ ∈ C
Nf×Nf is a subspace rotation matrix whose

eigenvalues give the normalized delay estimates. (13) can then

be solved in the least square sense to obtain

Φ = (VH
s1Vs1)

−1
V

H
s1Vs2 (14)

If {µc}
Ĉ
c=1 are the Ĉ eigenvalues of Φ, the delay of the cth

cluster is estimated as

τ̂c =
arg[µc]

2π∆f
(15)

where arg[·] denotes the phase of the associated complex

number.

2We assume that the maximum number of clusters Cmax is known a-

priori which is reasonable since Cmax is determined by the propagation
environment.

3) Scattering Co-efficient Estimation: Once the cluster de-

lays have been estimated, an estimate of the Ĉ × Nt matrix

Hnm containing the scattering coefficient for the channel

between the nth receive and mth transmit antenna is obtained

in the least square sense as

Ĥnm = (FH
F+ ηI)−1

FĤnm (16)

where η is the regularizing parameter introduced to minimize

the effects of cluster delay estimation error on the solution

of (16). η is chosen empirically as η = 10−6 in this paper.

F is the Nf × Ĉ Fourier transform matrix with [F]a,b =
exp(−j2πa∆fτb) and Ĥnm is a Nf ×Nt matrix containing

the estimated frequency domain pilot channel between the nth

receive and mth transmit antenna elements over the Nt pilot

symbol periods. Estimates of the MIMO channel response for

the cth cluster at the qth time instant is obtained from the

solutions of (16) as

Ĥc(q) =















Ĥ11(c, q) Ĥ12(c, q) · · · Ĥ1M (c, q)

Ĥ21(c, q) Ĥ22(c, q) · · · Ĥ2M (c, q)

...
...

. . .
...

ĤN1(c, q) ĤN2(c, q) · · · ĤNM (c, q)















(17)

B. Joint Angle and Doppler Estimation

Given the estimates in (17) and the model in (3), the AOA,

AOD and Doppler shifts can be jointly extracted for the rays

within each of the Ĉ clusters. We propose a 3D ESPRIT based

approach for the joint estimation. Using the Nt estimates in

(17), we estimate the spatio-temporal correlation matrix for

the cth cluster as

R̂
c
t =

1

2St

(

D̂cD̂
H
c + JD̂

H
c D̂cJ

)

(18)

where D̂c is a NMTt × St Hankel matrix defined as

D̂c =















ĥc(1) ĥc(2) · · · ĥc(St)

ĥc(2) ĥc(3) · · · ĥc(St + 1)

...
...

. . .
...

ĥc(Tt) ĥc(Tt + 1) · · · ĥc(Nt)















(19)

and ĥc(q) is the NM × 1 vector obtained by stacking the

columns of Ĥc(q), Tt = Nt − St + 1. Tt can also be chosen

using the rule in (9). However, since the size of D̂t, and hence

R̂
c
t , depends on the number of transmit and receive antennas,

the complexity of the estimation algorithms will grow with the

number of antennas. In order to overcome this limitation, we

choose Tt using

Tt =

⌈

3Nt

5NM

⌉

(20)

1) Estimation of the Number of Rays: The number of rays

Rc is estimated as R̂c using the MMSE-MDL given in (11)

with the eigenvalues of R̂f replaced with the eigenvalues of

R̂
c
t and Nf with Nt.



2) ESPRIT Based Angle and Doppler Estimation: Let Es

be the signal subspace matrix containing the eigenvectors

corresponding to the R̂c largest eigenvalues of R̂c
t . Similar to

the 1D ESPRIT approach [16], we form three invariance equa-

tions corresponding to the transmit and receive and Doppler

dimensions as

JR1Es = JR2EsΘR

JT1Es = JT2EsΘT

JD1Es = JD2EsΘD (21)

where ΘR, ΘT and ΘD are subspace rotation matrices cor-

responding to the receive, transmit and Doppler dimensions,

respectively. The selection matrices for the receive spatial

dimension are defined as

JR1 = IM ⊗ ITt
⊗

[

I(N−1) 0(N−1)

]

JR2 = IM ⊗ ITt
⊗

[

0(N−1) I(N−1)

]

(22)

The selection matrices for the other dimensions are defined

analogously. The subspace rotation matrices in (21) are ob-

tained via a least square solution of the equations as

ΘR = ((JR2Es)
H(JR2Es))

−1(JR2Es)
H(JR1Es)

ΘT = ((JT2Es)
H(JT2Es))

−1(JT2Es)
H(JT1Es)

ΘD = ((JD2Es)
H(JD2Es))

−1(JD2Es)
H(JD1Es) (23)

Similar to [17], it can be shown that the eigendecomposi-

tions of ΘR, ΘT and ΘD give estimates of Ωr,c, Ψr,c and

γr,c respectively. However, this requires an additional stage

for pairing the parameter estimates which is typically done

using simultaneous Schur decomposition [18]. This scheme,

however, increases the complexity of the entire algorithm

significantly. In order to achieve automatic pairing of the

estimates and minimize the additional complexity resulting

from parameter pairing, we utilize the mean eigenvalue de-

composition (MEVD) [19]. Denoting

Θ = ΘR +ΘT +ΘD

= TΛT
−1 (24)

where T denotes the common eigenvector matrix and Λ is

the diagonal matrix containing the eigenvalues of Θ. The R̂c

eigenvalues for each dimension are then obtained using

ΛR = diag[T−1
ΘRT]

ΛT = diag[T−1
ΘTT]

ΛD = diag[T−1
ΘDT] (25)

where diag[·] contains the diagonal entries of the associated

matrix. The parameter estimates for the rth ray in the cth
cluster are given by

Ω̂r,c = − arg[ΛR(r)]

Ψ̂r,c = − arg[ΛT (r)]

γ̂r,c = arg[ΛD(r)] (26)

3) Complex Amplitude Estimation: Once the parameters

of the rays within each of the clusters have been estimated,

estimation of the complex amplitudes βr,c of (3) can be

achieved in a least square sense. Let ĥc
11 be the 1×Nt vector

obtained from the cth row of H11, the complex amplitudes of

the rays in the cth cluster are obtained from

β̂c = (GH
c Gc + ηI)−1

Gcĥ
c
11 (27)

where β̂c = [β̂1,c, · · · , β̂R̂c,c
]T and the Nt×R̂c Vandermonde

structured matrix Ĝc is defined as

Ĝc =













1 · · · 1

exp(jγ1,c) · · · exp(jγ
R̂c,c

)

...
. . .

...

exp(j(Nt − 1)γ1,c) · · · exp(j(Nt − 1)γ
R̂c,c

)













(28)

It should be noted that although we estimated the complex

amplitudes using only one entry of the MIMO channel in (27)

for complexity reasons, a possibly improved estimate can be

obtained by formulating expressions analogous to (27) for all

other entries of the CSI matrix and finding a common solution

for all the equation sets. The complexity of this approach will

however increase with increasing number of antennas.

C. Channel Prediction

Having estimated the parameters of the doubly selective

channel, prediction of the channel is achieved by substituting

the parameters into the model for the desired frequency and

temporal instants. The predicted CSI is thus

H̃(q +∆, p) =
Ĉ
∑

c=1

R̂c
∑

r=1

β̂r,cârâ
T
t exp(j((q +∆)γ̂r,c − pη̂c))

(29)

where q+∆ denotes the time index of the predicted channel.

IV. NUMERICAL SIMULATION

In this section, we analyse the performance of the proposed

prediction scheme compared to previous methods. We consider

a pilot based MIMO-OFDM system, where the channel is

generated using the WINNER II SCM model [11] with the pa-

rameters shown in Table I. Other model parameters retain their

default values. Since previous methods for wideband MIMO

prediction in open literature do not account for the spatial

structure of the channel, the proposed scheme is not directly

comparable with any of these methods. A possible method to

which the new scheme can be compared is the multivariate

linear prediction approach. This method has, however, been

shown in [20] using both synthesized and measured channel

data to be unreliable for MIMO channels with dense scattering.

We therefore, compare our algorithm with an application of

univariate linear prediction schemes that performs prediction

in the time-domain on the cluster scattering coefficients in

(16). The order of the linear prediction filter is set to ℓ = 20
and we apply the Burg algorithm [21] for estimating the

prediction coefficients.



TABLE I: Simulation Parameters

Parameter Value

Number of antenna pairs (BS,MS) N=2,4; M=2,4

BS antenna spacing 1/2λ
MS antenna spacing 1/2λ

Channel Model 3GPP/WINNER II

Scenario Urban Macro (UMA)

Carrier frequency 2.6 GHz

Mobile Velocity 50 Kmph

Bandwidth 20 MHz

Number of Subcarriers 1024

Number of Pilot Subcarriers 48

Sampling Interval 2 ms

Training length 500

A. Performance Comparison

We evaluate the performance of the algorithms in terms of

the normalized mean square error (NMSE) averaged over 1000

channel realizations. In Figure 2, we present the NMSE versus

prediction horizon (in wavelengths) for the proposed algorithm

compared to the autoregressive (AR) model based prediction

[3]. Clearly, the proposed algorithm outperforms the linear

prediction method for all antenna sizes simulated. A plausible

explanation for the performance gain is the super resolution

of the parameter estimation stage of the proposed algorithm

and the utilization of both spatial and temporal statistics of

the channel. Similar observations have been made in [22]

while studying bounds on the prediction of narrowband MIMO

channels.

A plot of the NMSE as a function of SNR is presented in

Fig. 3. As expected, the performance of both prediction algo-

rithms improves with increasing SNR. However, the perfor-

mance gain offered by the proposed algorithm also increases

with SNR. For instance, while the difference between the

NMSE of the proposed algorithm and AR prediction method

at SNR = 0 dB is about 8 dB, the gain in NMSE increases to

25 dB at SNR = 30 dB. This is due to the improved parameter

estimation accuracy at high SNR.

Finally, we present a plot of the NMSE versus antenna sizes

in Fig. 4. We observe that increasing the number of transmit

and/or receive antenna elements improves the performance

of the proposed algorithm, in contrast to the AR prediction

performance which is approximately constant for all antenna

sizes. This is expected since the AR prediction method treats

the entries of the MIMO channel as NM independent SISO

channels. Since ESPRIT based schemes provide computation-

ally efficient approach for model parameter extraction, we

believe that the complexity of our algorithm is comparable

to previous methods. However, detailed evaluation of the

computational complexity is left for future work due to space

constraints.

V. CONCLUSION

We proposed a new algorithm for the prediction of a realistic

double directional and doubly selective MIMO-OFDM spatial
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Fig. 2: Normalized mean square prediction error versus pre-

diction length at SNR = 10 dB using the proposed prediction

algorithm and an application of AR based prediction on the

time domain cluster scattering co-efficients for each antenna

pair.
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Fig. 3: Normalized mean square prediction error versus SNR

for a prediction length of 1λ using the proposed prediction

algorithm and an application of AR based prediction on the

time domain cluster scattering co-efficients for each antenna

pair.

channel. The proposed algorithm estimates the cluster delay

and scattering coefficients via a 1D ESPRIT approach and

utilizes a 3D ESPRIT based scheme to jointly estimate the

angles of arrival, angles of departure and Doppler shifts. The

estimated parameters are then used to extrapolate the channel

using the model. Simulation results using the industry stan-

dard 3GPP/WINNER II spatial channel model show that the

proposed algorithm offers improved prediction performance

over previous schemes with similar computational complexity.

Future work will evaluate the performance of the proposed

method using real measured channel data.
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